
CHAPTER 4

The Generalized Likelihood
Uncertainty Estimation
methodology

Calibration and uncertainty estimation based upon a statistical framework is
aimed at finding an optimal set of models, parameters and variables capable of
simulating a given system.

There are many possible sources of mismatch between observed and simulated
state variables (see section 3.2). Some of the sources of uncertainty originate
from physical randomness, and others from uncertain knowledge put into the
system. The uncertainties originating from physical randomness may be treated
within a statistical framework, whereas alternative methods may be needed to
account for uncertainties originating from the interpretation of incomplete and
perhaps ambiguous data sets.

The GLUE methodology (Beven and Binley 1992) rejects the idea of one single
optimal solution and adopts the concept of equifinality of models, parameters
and variables (Beven and Binley 1992; Beven 1993). Equifinality originates from
the imperfect knowledge of the system under consideration, and many sets of
models, parameters and variables may therefore be considered equal or almost
equal simulators of the system. Using the GLUE analysis, the prior set of mod-
els, parameters and variables is divided into a set of non-acceptable solutions and
a set of acceptable solutions. The GLUE methodology deals with the variable
degree of membership of the sets. The degree of membership is determined by
assessing the extent to which solutions fit the model, which in turn is determined
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by subjective likelihood functions. By abandoning the statistical framework we
also abandon the traditional definition of uncertainty and in general will have to
accept that to some extent uncertainty is a matter of subjective and individual
interpretation by the hydrologist. There are strong parallels between uncertainty
in a Fuzzy set ruled system and uncertainty in the GLUE methodology. Fuzzy
logic is an alternative or supplement to the classical probabilistic framework
in situations where very little information is available, and such information
as there is tends to be ambiguous and vague. Considering the sources of mis-
match between observed and simulated state variables (see section 3.2), it can
be argued that the mismatch is to a great extent due to vague and ambiguous
interpretations.

The GLUE methodology consists of the 3 steps described below (Fig. 4.1).
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Figure 4.1: The GLUE procedure. (a) prior statistics, (b) stochastic modelling, (c)
unconditional statistics of system state variables, (d) evaluation procedure
(e) posterior parameter likelihood functions and (f) likelihood functions for
system state variables

Step 1 is to determine the statistics for the models, parameters and variables
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that, prior to the investigation, are considered likely to be decisive for the sim-
ulation of the system (a). Typically quite wide discrete or continuous uniform
distribution is chosen - reflecting the fact that there is little prior knowledge of
the uncertainties arising from models, parameters and variables. In principle all
available knowledge can be put into the prior distributions.

Step 2 is a stochastic simulation (b) based on the models, parameters and vari-
ables defined in step 1. The Monte Carlo or Latin Hypercube method (Appendix
A) may be used to do a random sample of the parameter sets. Step 2 gives us
an unconditional estimate of the statistics of any system state variable (c).

In step 3 an evaluation procedure (d) is carried out for every single simulation
performed in step 2. Simulations and thus parameter sets are rated according to
the degree to which they fit observed data. If the simulated state variables are
“close” to the observed values the simulation is accepted as having a given likeli-
hood L(θ|ψ), whereas if the considered simulated state variables are unrealistic
the simulation is rejected as having zero likelihood.

In this way a likelihood value is assigned to all accepted parameter sets (zero
for rejected sets and positive for accepted sets). The direct result of this is a
discrete joint likelihood function (DJPDF) for all the models, parameters and
variables involved. The DJPDF can only be illustrated in two, maximum three,
dimensions, and likelihood scatter plots are often used to illustrate the estimated
parameters, see e.g. Fig. 5.7. In Fig. 4.1 the models, parameters and variables
θ1, ..., θi, ..., θN are considered independent, the likelihood is projected onto the
parameter axis, and discrete density functions (e) are presented, see section 4.3.
Discrete likelihood functions for all types of system state variables can likewise
be constructed (f).

4.1 Likelihood measures

Likelihood is a measure of how well a given combination of models, parameters
and variables fits, based on the available set of observations. The likelihood
measure thus describes the degree to which the various acceptable solutions are
members of the set, i.e. their degree of membership.

The calculation of the likelihood of a given set of models, parameters and vari-
ables is the key feature of the GLUE methodology, and in this respect GLUE
differs from the classical methods of calibration and uncertainty estimation. As
will be seen in what follows a wide range of likelihood measures are suggested -
all with different qualities. There are no definitive rules for choosing a certain
likelihood measure. Some personal preferences are however mentioned in section
4.2.
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The likelihood measure consists, in this thesis, of three elements: 1) a rejection
level that indicates whether the acceptance criteria are fulfilled or not, 2) a
point likelihood measure that sums up the degree of model fit in the individual
observation points and 3) a global likelihood measure that is an aggregation of
all the point likelihood measures.

Often the rejection level is implicitly given in the point likelihood function, and
occasionally the rejection level, the point likelihood measure and the global like-
lihood measure are all gathered in one function.

The likelihood functions presented below in Fig. 4.2 are based on a combination
of the likelihood functions derived from the classical statistical framework and
from GLUE, and the Fuzzy logic literature.

Figure 4.2: a) Gaussian likelihood function , b) model efficiency likeli-
hood function, c) inverse error variance likelihood function,
d) trapezoidal likelihood function, e) triangular likelihood
function and f) uniform likelihood function

4.1.1 Traditional statistical likelihood measures

Gaussian likelihood function

The Gaussian likelihood function, Fig. 4.2a, is often used in a classical statistical
framework. The residuals are assumed to be Gaussian and the likelihood equals
the probability that the simulated value, ψi(θ), equals the observed value, ψ∗

i :
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L (θ|ψ∗
i ) =

1√
2πσψ∗

i

e
−
(

(ψ∗
i−ψi(θ))

2

2σ2
ψ∗
i

)
(4.1)

or for Nobs observations

L (θ|ψ∗) = (2π)
Nobs

2 | Cψ∗ |− 1
2 e(

1
2 (ψ∗−ψ(θ))TC−1

ψ∗ (ψ∗−ψ(θ))) (4.2)

where, as in a statistical framework σψ∗
i

and Cψ∗ symbolise the unknown stan-
dard deviation and covariance of observed state variables - often approximated
by the expected standard deviation and covariance of observed state variables.
Eq. 4.2 corresponds to the product inference function (section 4.1.4) of Eq. 4.1,
given independent observations.

The N-dimensional Gaussian likelihood function (4.2) is a function that depends
on the number of observations. As the number of observations increases, so does
the likelihood of the best simulations, until finally (Nobs → ∞) all likelihood is
ascribed to the single best simulation. The likelihood function yields parameter
and uncertainty estimates that are similar to those achieved within a statistical
framework when this is applied to well-posed linear models with Gaussian errors
and the estimate implicit assumes that the model is error free.

The Gaussian likelihood function is defined from −∞ to ∞ and thus no rejection
level is implicitly given. In order to reduce the number of simulations, it will
often be appropriate to introduce a rejection level (a and c on Fig. 4.2a), e.g. at
three times the standard deviation.

4.1.2 Traditional GLUE likelihood measures

Model efficiency function

The model efficiency function, Fig. 4.2b, is given as (Beven and Binley 1992)

L (θ|ψ∗) =
(
1 − σ2

ε/σ
2
0

)
; σ2

ε ≥ σ2
0 ⇒ L (θ|ψ∗) = 0 (4.3)

where
σ2
ε =

1
Nobs

(ψ∗ −ψ(θ))T V (ψ∗ −ψ(θ)) (4.4)

is the weighted variance of the residuals and σ2
0 is the weighted variance of the

observations. Here V is a weight matrix.
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The likelihood equals one if all residuals are zero, and zero if the weighted vari-
ance of the residuals is larger then the weighted variance of the observations.

Inverse error variance function

Beven and Binley (1992) have suggested a function based on the inverse error
variance with shaping factor N , Fig. 4.2c:

L (θ|ψ∗) =
(
σ2
ε

)−N
(4.5)

This function concentrates the weights of the best simulations as N increases.
For N → ∞ all weight will be on the single best simulation and for small values
of N all simulations will tend to have equal weight.

4.1.3 Fuzzy likelihood measures

A point observation of the ith system state variable, ψ∗
i , and a computed value

of the same system state variable, ψi(θ) are considered. In the set of all possible
values of ψi, a subset, Ψi, is defined where the transition between membership
and non-membership is gradual. The likelihood - or, in Fuzzy terms, the degree
of membership - is maximum for simulated state variables that belong completely
to Ψi; elsewhere it is between 0 and the maximum value. In Fuzzy logic Ψi is
called a fuzzy set and the likelihood (degree of membership) is described by the
likelihood function (membership function), �LΨi . The likelihood function can in
principle be an arbitrary, non-symmetric and biased function. The trapezoidal,
triangular and uniform likelihood functions are typical Fuzzy logic membership
functions where the likelihood or degree of membership is evaluated through
relatively simple functions.

First the point likelihood measures are described, and then the point likelihood
measures are combined through the so-called inference functions.

Trapezoidal likelihood function

The trapezoidal likelihood function, Fig. 4.2d, is given as

L (θ|ψ∗
i ) =

ψi(θ) − a

b− a
Ia,b(ψi(θ)) + Ib,c(ψi(θ)) +

d− ψi(θ)
d− c

Ic,d(ψi(θ)) (4.6)

where
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Ia,b =

{
1 if a ≤ ψi(θ) ≤ b

0 otherwise

Ib,c =

{
1 if b ≤ ψi(θ) ≤ c

0 otherwise

Ic,d =

{
1 if c ≤ ψi(θ) ≤ d

0 otherwise

Triangular likelihood function

The triangular likelihood function, Fig. 4.2e, is given as

L (θ|ψ∗
i ) =

ψi(θ) − a

b− a
Ia,b(ψi(θ)) +

c− ψi(θ)
c− b

Ib,c(ψi(θ)) (4.7)

where

Ia,b =

{
1 if a ≤ ψi(θ) ≤ b

0 otherwise

Ib,c =

{
1 if b ≤ ψi(θ) ≤ c

0 otherwise

Uniform likelihood function

The uniform likelihood function, Fig. 4.2f, is a special case of the trapezoidal
likelihood function where a = b and c = d.

L (θ|ψ∗
i ) =

{
1 if a < ψ∗

i − ψi(θ) < b

0 otherwise
(4.8)

4.1.4 Inference functions

The overall combination of the individual point likelihood (degree of member-
ship) for the observation points is assembled through the so-called degree of
fulfilment (DOF) (Dubois and Prade 1980), which, in this context, is the overall
likelihood value for the simulation - a global likelihood measure, L (θ|ψ∗). A
classification of aggregation operators used in Fuzzy rules systems is given in
Zimmermann (1991), p. 40-41, and some relevant operators are given below
(Dubois and Prade 1980; Zimmermann 1991):
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Product inference

L (θ|ψ∗) =
Nobs∏
i=1

L (θ|ψ∗
i ) (4.9)

The product inference is very restrictive - if one observation is outside the Fuzzy
set, Ψ, (i.e. rejected) the global likelihood will be zero. As Nobs increases, the
global likelihood response surface becomes steeper and steeper and as Nobs → ∞
all except the single best simulation will have negligible likelihood.

Min. inference

L (θ|ψ∗) = min
i=1,...,Nobs

L (θ|ψ∗
i ) (4.10)

The min. inference is as restrictive as the product inference function but the
global likelihood response surface is more flat.

Max. inference

L (θ|ψ∗) = max
i=1,...,Nobs

L (θ|ψ∗
i ) (4.11)

The max. inference is the least restrictive inference function. The likelihood is
evaluated from the observation point with the best agreement. If just one ob-
servation is inside the Fuzzy set (i.e. accepted), then the simulation is accepted.

Weighted arithmetic mean inference

L (θ|ψ∗) =
1

Nobs

Nobs∑
i=1

ωiL (θ|ψ∗
i ) (4.12)

where ωi is the weight on the ith observation.

As in the case of max. inference, the inclusion of just one observation within the
accepted set will result in acceptance of the simulation. The response surface for
the arithmetic mean inference is very flat.

60
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Geometric mean inference

L (θ|ψ∗) = Nobs

√√√√Nobs∏
i=1

L (θ|ψ∗
i ) (4.13)

The geometric mean inference is as restrictive as the product and min. inference,
but the likelihood response surface is less steep. The function is independent of
the number of observations.

The way that a likelihood calculation might be performed when different types
of observation data are available is illustrated in example 4.1 below.

Example 4.1 A stationary groundwater model is constructed for a river catch-
ment. The model is calibrated to a summer situation. The following observations
are available:

• Head observations in 16 wells. From initial studies the standard error on
the observed heads is estimated to be 1.5 m. Trapezoidal likelihood functions
are applied. Fig. 4.3(a)

• Median value of annual minimum discharge observations at one station in
“Large Creek”. The estimation error is assumed to be Gaussian with a
standard error of 10 % of measured discharge. The rejection level is three
times standard error. Fig. 4.3(b)

• A local farmer has stated that “Little Creek dries out every summer”. We
do not rely totally on this statement and formulate a likelihood function
that gradually decreases from 0 l/s to 2.0 l/s. Fig. 4.3(c)

• Information from the local waterworks indicates that so far abstraction well
no. 12 has never dried out. Low hydraulic conductivities may result in the
closing of abstraction wells in the numerical model. Seen in the light of the
information given above, every simulation where the abstraction is closed
must be unrealistic, and consequently the likelihood is set at zero. Fig.
4.3(d)

In all, 19 observations are available and they are combined into an global simula-
tion likelihood measure by an inference rule, e.g. weighted arithmetic mean, Eq.
4.12, or geometric mean inference, Eq. 4.13. Alternatively two or more rules
can be combined, e.g. Eq. 4.14.

L (θ|ψ∗) = ωhead
1
16

∑16
i=1 Lh∗

i
(hi(θ)) · ωq1Lq∗1 (q1(θ))

·ωq2Lq∗2 (q2(θ)) · ωAbsLAbs∗2 (Abs(θ))
(4.14)
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hi hi +1.5 hi + 4.5 q q + 30%q - 30%hi -1.5hi - 4.5

open closed

1

head [m] "Large Creek"
discharge [l/s]

0 0.5 1.0 1.5

"Little Creek"
summer discharge[l/s]

Status,
Abstraction site # 

1

11

(a) (b)

(c) (d)

Figure 4.3: Examples of different likelihood functions

where ωhead, ωq1 , ωq2 and ωAbs are the weight on observed head data, observed
discharge in “Little Creek”, observed discharge in “Large Creek” and waterworks
observation respectively. Lh∗

i
(hi(θ)), Lq∗1 (q1(θ)), Lq∗2 (q2(θ)) and LAbs∗2 (Abs2(θ))

are likelihood functions for head data, discharge in “Little Creek”, discharge in
“Large Creek” and the abstraction respectively.

4.2 Designing the likelihood measure

The GLUE methodology is aimed at finding possible sets of models, param-
eters and variables which produce a model output that is in agreement with
observations. The likelihood measure reflects the degree to which we accept the
simulated output to deviate from observations due to the numerous error sources.

The first step in the construction of the likelihood function is to analyse possible
sources of mismatch between observed and simulated state variables. Section
3.2 is a description of the different types of observation data and a description
of the different sources of mismatch between observed and simulated values.
Section 3.2 may be used as a guideline in estimating the expected standard
errors of observation. In reviewing the possible errors, the hydrologist is forced
to consider what is included in the model and what is not. E.g. if the purpose
of the model is to model small-scale point pollution, small-scale heterogeneity
is very important and consequently has to be modelled in such a way that the
error contribution from ignored small-scale heterogeneities will be very small.

In the opinion of the author the estimated expected error should be closely
related to the likelihood measure. The rejection level may be three times the
expected standard error, reflecting a very low probability of larger errors: see
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Chapters 5 and 6

The second step in the calculation of the likelihood measure is the combination
of the individual point likelihood measures into a global likelihood measure.

The aim of the point likelihood measures is to account for all expected uncer-
tainty, and in the author’s opinion therefore the simulation can be accepted only
if all point observations are accepted - no simulated state variables can be tol-
erated outside the rejection level. If this results in an over-restrictive likelihood
measure, the point likelihood measures, and thus the expected errors, should be
reconsidered, and if there is no objective reason for increasing the amount of
expected error the model should be reconsidered.

The min. inference, the product inference and the geometric mean inference
function fulfil the requirement listed above (all point likelihood measures have
to be positive in order to accept the simulation).

The geometric mean inference function is attractive because the likelihood mea-
sure is independent of the number of observations. This means that the uncer-
tainty estimate does not improve if the number of observations is doubled. This
behaviour contrasts with the classical regression framework, where it is assumed
that the estimation error is reduced as the number of observations increases.
Actually, the maximum likelihood estimate for N independent parameters is the
product inference of the independent maximum likelihood estimate.

The reason why the geometric mean inference function is found attractive lies
within the error sources. From section 3.2 it can be seen that the main er-
ror contributions (scale errors) do not disappear as the number of observations
increases, and neither should the uncertainty of the model outcome.

Following the GLUE analysis a validation of all observation points should be
performed. From the accepted simulations the probability density functions for
the simulated values in the observations points can be found, and the majority of
the observations should be within the 95% prediction interval. A poor validation
indicates that the likelihood measure is too restrictive and that not all sources
of uncertainty are accounted for. See sections 5.6.8 and 6.4.

4.3 Bayesian updating of prior parameter distri-
butions

Following the GLUE analysis the likelihoods are known in a number of discrete
points in the space of models, parameters and variables. The posterior likelihood
functions for the models, parameters and variables involved can be found from

63



CHAPTER 4. THE GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION
METHODOLOGY

Bayes’ theorem

Lp (θ|ψ∗) =
L (θ|ψ∗)L (θ)∫
L (θ|ψ∗)L (θ) dθ

(4.15)

where Lp (θ|ψ∗) is the posterior likelihood distribution for models, parameters
and variables and L (θ)) is the prior likelihood/probability distribution for mod-
els, parameters and variables.

Let us for example assume the we have Nacc acceptable parameter sets with
likelihood L (θ1|ψ∗) , ..., L (θi|ψ∗) ..., L

(
θNacc|ψ∗

)
and from the joint prior like-

lihood /probability distribution we have corresponding prior likelihood at the
same points in parameter space L (θ1) , ..., L (θi) ..., L (θNacc) The posterior like-
lihood of the points considered in the space of models, parameters and variables
is

Lp (θi|ψ∗) =
L (θi|ψ∗)L (θi)∑Nacc
i=1 L (θi|ψ∗)L (θi)

(4.16)

It can be shown that in the case of uniform prior distributions the posterior
likelihood equals the GLUE computed likelihood, Lp (θi|ψ∗) = L (θi|ψ∗).

4.4 An example

In example 3.1, p. 42, it was argued that both head and river inflow observations
were necessary in order to make the calibration of q and T unique. The GLUE
methodology does not set restrictions on the basis of uniqueness - non-uniqueness
will simply result in a larger range of possible parameter values.

The GLUE methodology is applied to example 1.1, p. 42, with the parameters
presented in Fig. 4.4.

A Monte Carlo simulation is performed with 20,000 random realisations of q and
T . Each realisation results in an estimate of h2, h3 and Qr. Qr is found as the
total amount of water infiltrated into the aquifer, Qr = q · 1000m · 1m

We now want to use the “observations” of h∗2, h∗3 and Q∗
r in order to calculate

the likelihood of each of the 20,000 simulations. h∗2, h∗3 and Q∗
r are found from

Eq. 1.3 with the parameters:

q = 400 mm year−1

T = 5. 10−4 m2 s−1
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Figure 4.4: Groundwater flow problem and parameters. U [·] denotes
uniform distribution

and error of -0.1 m, 0.7 m and 7.34 10−7 m3 s−1 are added to h∗2, h∗3 and Q∗
r ,

respectively in order to represent observation errors and model errors. This
yields

h∗2 = 29.4 m

h∗3 = 25.5 m

Q∗
r = 1.2710−4 m3 s−1

Prior to the simulation the expected standard error in the observations is esti-
mated at 0.3 m on the head observations and 10 % of the observed river inflow.

The trapezoidal point likelihood function is used in the evaluation of h∗2, h∗3 and
Q∗
r , see Fig. 4.5.
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Figure 4.5: Likelihood functions for h2, h3 and Qr

Three point likelihood values, Lh2,i , Lh3,i , LQr,i , are calculated on the basis of
h2,i, h3,i and Qr,i and the global likelihood for the ith simulation is calculated
using the geometric mean inference function.

Two scenarios are considered:
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a) Only head observations are used in the calculation of the global likelihood:

Li (ψ∗
2 , ψ

∗
3 |qi, Ti) =

√
Lh2,iLh3,i (4.17)

In this scenario 1,800 of the 20,000 simulations are accepted.

b) Head and river inflow observations are used in the calculation of the global
likelihood:

Li (ψ∗
2 , ψ

∗
3 , Q

∗
r |qi, Ti) = 3

√
Lh2,iLh3,iLQr,i (4.18)

Here 1,400 of the 20,000 simulations are accepted.

In Figure 4.6 the parameter respond surface for scenarios a and b is presented.
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Figure 4.6: Likelihood surfaces in normalised parameter space. a) h2 and h3 have been used
in the calculation of likelihood surface. b) h2, h3 and Qr have been used in the
calculation of the likelihood surface. The cross indicates the parameter set used
in the calculation of the “observed” values.

Non-uniqueness is recognised in scenario a where only head data are used in the
GLUE analysis. If we look at the response surface/curve at a given value of q it
is seen that the band of possible T values is quite narrow, but when we look at
the total variation of T for all values of q the band is much wider.

In scenario b both head and river data are included and the band of possible q
values is narrower than in case a.

For both scenarios the “true” parameter solution is among the accepted solutions,
but not in the region with maximum likelihood. This is due to errors introduced
on the observations. If we remove the errors the true parameter solution will fall
on the line with maximum likelihood.
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The posterior parameter likelihood distributions are identical to the parameter
likelihood distribution, because the prior likelihood distribution of q and T is
uniform.

If we look at the likelihood distribution curves for ψ1 for scenarios a and b we
see that they are very similar, Fig. 4.7
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Figure 4.7: Likelihood distribution curves ψ1.

This indicates that the predictive uncertainty of ψ1 is mainly influenced by the
head observations. If the head rejection criteria are tightened (less expected error
in ψ2 and ψ3 or a different likelihood function) then there will be less predictive
uncertainty in ψ1. However, this does not mean that predictive capability is
invariant to Qr in general.

Fig. 4.8 presents the likelihood distribution curves of the average Darcy velocity
in the aquifer.
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Figure 4.8: Likelihood distribution curves ψ2.

Scenario a results in a significantly larger uncertainty in flow velocities in the
aquifer than scenario b.
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CHAPTER 4. THE GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION
METHODOLOGY

4.5 Generation of random parameter sets

The aim of the GLUE methodology is to find regions in the parameter space
resulting in acceptable simulations. Random search methods such as the Monte
Carlo method and the Latin Hypercube method have been used in the search in
most GLUE applications. These methods are in many ways ineffective because
regions of interest often only constitute a small fraction (< 1%) of the prior-
defined space of models, parameters and variables. The response surface however
is often very complex, with multiple local maxima, valleys and plateaus in a
high dimensional parameter space. This makes more intelligent search methods
complicated and in some cases inefficient.

In the Gjern setup presented in Chapter 6 an attempt was made to reject certain
parameter sets prior to the simulation simply by examining the likelihood in
the surrounding region of the parameter set in the parameter space. A similar
procedure was used in the original Beven and Binley (1992) study.

The procedure was 1) to generate a parameter set, 2) to interpolate the likeli-
hood value from the surrounding, already simulated, parameter sets, 3) to add
a distance-related error to the interpolated value (the closer the point is to the
previously sampled parameter sets, the more certain is the interpolation and vice
versa) and 4) to simulate the parameter set if the likelihood value was above a
certain level. To start with almost all parameter sets were simulated because of
the sparse representation, but once a few millions parameter sets had been sim-
ulated, up to 60 % of new parameter sets were rejected in advance. There were
however no computational benefits from this, due to the costs of interpolating
among millions of parameters sets in an 11-dimensional space.

4.6 Concluding remarks

This chapter describes the GLUE methodology that has become a central part of
this ph.d. thesis. The use of likelihood functions to evaluate model fit is the key
feature of the GLUE methodology. As a supplement to the traditional likelihood
measures a number of subjective likelihood measures are introduced and it is
thus accepted that the GLUE methodology does not yield uncertainty measures
comparable to those produced within the classical statistical framework, but
rather offers a statistical measure relating to the subjective impressions of the
hydrologist involved. In section 4.2 a few guidelines regarding the design of the
likelihood measure have been suggested.

In the following two chapters the GLUE methodology is applied to a synthetic
groundwater model and to a region aquifer system.
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4.6. CONCLUDING REMARKS

The main questions to be answered in these two chapters are:

(i) Is it possible from a computational point of view to conduct a GLUE anal-
ysis on a typically stationary groundwater model application?

(ii) Is it possible to use the guidelines presented in section 4.2 to design likeli-
hood measures that yield reasonable results?
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